Сейсмическая разведка - определение. Что такое Сейсмическая разведка
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Сейсмическая разведка - определение

Сейсмическая разведка
  • Сейсмограмма, полученная Людгером Минтропом
  • Работы методом преломлённых волн в штате Оклахома (Компания Сейсмос, 24.07.1923)
  • Годографы волн в первых вступлениях
  • Вибрационный сейсморазведочный источник
  • Сейсмический глубинный разрез
Найдено результатов: 86
СЕЙСМИЧЕСКАЯ РАЗВЕДКА         
(сейсморазведка) , группа методов разведочной геофизики, основана на наблюдении процессов распространения искусственно возбуждаемых упругих волн. Используется для изучения строения земной коры, поисков и подготовки к разведочному бурению нефтеносных структур и др.
Сейсмическая разведка         

сейсморазведка, методы разведочной геофизики, основанные на изучении особенностей распространения упругих (сейсмических) волн в земной коре, с целью исследования её геологического строения. Для С. р. применяют методы отражённых и преломленных волн и пьезоэлектрического эффекта. Применение отражённых сейсмических волн предложено американским учёным Р. Фессенденом в 1913, независимо советским инженером В. С. Воюцким в 1923, но вследствие значительных технических трудностей впервые реализовано в 1928-30. Простейший вариант использования преломленных волн по Л. Минтропу (немецкий геофизик) (1919) применялся с 1922-23; в современном виде предложен в 1939 советским геофизиком Г. А. Гамбурцевым. Применение пьезоэлектрического эффекта предложено советским геофизиком М. П. Воларовичем и др. Основные методы С. р.: отражённых волн (МОВ) и преломленных волн (МПВ), использующих различие упругих свойств и плотности горных пород.

При МОВ возбуждённая взрывом или механическим воздействием сейсмическая волна, распространяясь во все стороны от него, последовательно достигает нескольких отражающих границ (рис. 1). На каждой из них возникает отражённая волна, которая возвращается к поверхности Земли, где фиксируется приборами. МОВ позволяет одновременно изучать геологическое строение на глубинах от 0,1-0,2 до 7-10 км и определять глубины сейсмических границ с точностью до 1-2\%, обнаруживая при этом небольшие угловые несогласия, зоны выклинивания и участки смены фаций. МОВ - наиболее точный и детальный метод изучения осадочных толщ, используемый главным образом при поисках нефти и газа, а также при изучении некоторых рудных месторождений и региональных геологических исследованиях.

МПВ основывается на наблюдении волн, которые, преломившись в слое, отличающемся повышенной скоростью распространения сейсмических волн, проходят в этом слое значительная часть пути и после повторного преломления возвращаются к поверхности Земли (рис. 2). Пользуясь МПВ, можно определять положение и форму поверхности одного или нескольких таких слоев и скорости в них на глубинах от нескольких м до десятков км.

К С. р. относится также пьезоэлектрических метод (ПЭМ), в котором особенности распространения упругих волн изучают, наблюдая возбуждаемое ими (при воздействии на пегматиты и некоторые горные породы) электромагнитное поле, возникающее вследствие пьезоэлектрического эффекта. ПЭМ позволяет обнаруживать породы, обладающие этим эффектом в значительной степени.

В С. р. применяют преимущественно Продольные волны, скорость которых в горных породах от 0,4-0,5 до 7-8 км/сек (Поперечные волны применяют редко ввиду трудности их возбуждения; скорости поперечных волн от 0,1 до 5 км/сек). Частоты регистрируемых колебаний, возбуждаемых сейсмическими волнами, составляют от 3-5 Гц при глубинных исследованиях и до 150-250 Гц при изучении небольших глубин. С. р. проводят вдоль профилей, на которых через определённые интервалы располагают источники и приёмники колебаний. В качестве источников колебаний используют взрывы зарядов в неглубоких (первые десятки м) скважинах; применяют также вибрационные или ударные передвижные установки. При каждом положении источника колебаний замеры на профиле производят Сейсмоприёмниками, в которых механические колебания почвы преобразуются, в электрические; последние по соединительным линиям (косам) или по радио транслируются в передвижную сейсморазведочную станцию (См. Сейсморазведочная станция). Колебания, приходящие от каждого приёмника, усиливают, преобразовывают, записывают и получают полевую магнитную сейсмограмму; распределение времени пробега волны на профиле позволяет судить о путях её распространения, физическом типе и некоторых др. особенностях. Геологическую информацию из сейсмограмм извлекают обработкой на ЭВМ, в результате которой получают сейсмогеологические разрезы (рис. 3), отображающие положение сейсмических границ вдоль профиля, выраженное или во времени прихода сейсмических волн, или в глубинах. На основании разрезов составляют карты изохрон (См. Изохроны) или изогипс. Для правильного геологического истолкования материалов С. р. важно возможно более полное знание скоростей распространения волн в разрезе; сведения о скоростях волн могут быть получены из данных МОВ и отчасти МПВ и в особенности из данных детальных сейсмических наблюдений в глубоких скважинах. Несмотря на высокую стоимость, С. р. является наиболее распространённым среди геофизических методов.

С. р. применяют для решения задач структурной геологии чаще всего с целью поисков структур, благоприятных для скопления в них залежей нефти или газа и подготовки их к разведочному бурению, а также для прогнозирования наличия в них залежей нефти или газа. Данные, получаемые при детальных наблюдениях, в особенности МОВ, являются основой для обоснования места заложения глубоких разведочных скважин на нефть и газ. В сложных геологических условиях, при изучении глубоко залегающих структур и наличии сильных помех, для повышения глубинности и надёжности данных С. р. её сочетают со структурным бурением, проводя дополнительные сейсмические наблюдения в глубоких скважинах.

Поиск и разведка нефти и газа ведутся также с помощью морской сейсмической разведки. С. р. применяют для изучения структуры рудных полей, обнаружения и прослеживания крупных разломов, определения формы коренных пород под наносами. Посредством ПЭМ обнаруживают и локализуют пегматитовые тела и кварцевые жилы. Методы С. р. позволяют изучать некоторые инженерные свойства грунтов в массиве, а также определять положение водоупоров и уровня грунтовых вод. Для повышения геологической и экономической эффективности геологоразведочных работ С. р., особенно при региональных исследованиях, применяют в комплексе с др. геофизическими методами гравиметрической разведки (См. Гравиметрическая разведка), магнитной разведки (См. Магнитная разведка) и электрической разведки (См. Электрическая разведка), что обеспечивает большую надёжность геологических прогнозов. С. р. позволяет изучать региональное глубинное строение земной коры вплоть до Мохоровичича поверхности (См. Мохоровичича поверхность), для чего применяют глубинное сейсмическое зондирование.

Лит.: Гамбурцев Г. А., Основы сейсморазведки, 3 изд., М., 1959; Гурвич И. И., Сейсморазведка, 2 изд., М., 1970.

И. И. Гурвич.

Рис. 1. Схема сейсморазведочных работ методом отраженных волн: 1 - сейсмоприёмники; 2 - сейсморазведочная станция; 3 - взрывной пункт; 4 - место взрыва; 5 - прямая волна; 6 - отраженная волна.

Рис. 2. Схема образования преломленных волн: 1 - прямая и проходящая волны; 2 - преломленная головная волна; 3 - преломленная рефрагированная волна; 4 - закритическая отраженная волна.

Рис. 3. Сейсмологический временной разрез (цифрами показаны отражающие границы по горизонтам): I - мел; II - триас; III - карбон; IV - девон.

Сейсморазведка         
Сейсморазвѐдка — раздел разведочной геофизики, основанный на регистрации искусственно возбуждаемых упругих волн и извлечении из них полезной геолого-геофизической информации . Зародилась в начале 1920-х годов.
РАДИОПЕРЕХВАТ         
способ радиоразветки - обнаружение и расшифровка радиосигналов противника.
Радиоэлектронная разведка         
Радиоэлектронная разведка (РЭР) — дисциплина сбора разведывательной информации на основе приёма и анализа электромагнитного излучения (ЭМИ). Радиоэлектронная разведка использует как перехваченные сигналы из каналов связи между людьми и техническими средствами, так и сигналы работающей РЛС, станций РЭБ и тому подобных устройств.
радиоперехват         
м.
1) Прием и запись радиопередач противника как вид разведки.
2) Сведения, полученные в результате приема радиопередач противника.
ЭЛЕКТРИЧЕСКАЯ РАЗВЕДКА         
  • Геоэлектрический разрез
группа методов разведочной геофизики; основана на изучении естественных и искусственных электромагнитных полей, возникающих в земной коре под воздействием источников постоянного и переменного тока. Применяется при геологическом картировании, поисках и разведке месторождений полезных ископаемых и т. п.
Электромагнитная разведка         
  • Геоэлектрический разрез

группа индуктивных методов электрической разведки (См. Электрическая разведка). Начала разрабатываться с начала 20 в. в Швеции и США, в СССР - в 1928-30. При Э. р. источником первичного магнитного поля является незаземлённый контур, расположенный на поверхности земли, через который пропускается переменный электрический ток. Токи, индуцированные первичным магнитным полем в хорошо проводящих участках земной коры (например, рудных залежах), создают вторичное магнитное поле. Суммарное магнитное поле измеряют на поверхности земли многовитковыми рамками (магнитоиндукционными датчиками). По графикам измеренных вертикальных или горизонтальных составляющих напряжённости магнитного поля определяют положение хорошо проводящих или магнитных объектов в земной коре.

По зависимости применяемого поля от времени различают низкочастотные индуктивные методы (гармонические колебания напряжённости поля) и методы переходных процессов, в которых первичное поле изменяется ступенчато и исследуется переходный процесс после исчезновения первичного поля.

По типу используемого источника поля выделяют несколько методов Э. р.: незаземлённой петли (НП), длинного кабеля (ДК) и дипольного индуктивного профилирования (ДИП). В методе НП источником поля является прямоугольная петля со сторонами от нескольких сотен м до нескольких км. Магнитное поле измеряется на профилях, расположенных в центре петли перпендикулярно к её длинной стороне. Метод применяется для поисков месторождений хорошо проводящих руд. В методе ДК в качестве источника первичного поля используется длинный (до нескольких км) прямолинейный кабель, магнитное поле которого изучается вдоль профилей, перпендикулярных кабелю. Применяется для решения задач геологического картирования и прослеживания рудоконтролирующих структур. В ДИП источником поля является магнитный диполь - многовитковая рамка с диаметром около 1 м. Метод характеризуется меньшей глубиной исследования и используется при поисках хорошо проводящих руд и геологическом картировании.

Лит.: Электромагнитные методы разведки в рудной геофизике, М., 1966.

Ю. В. Якубовский.

Электроразведка         
  • Геоэлектрический разрез
Электроразведка (электрометрия) — раздел разведочной геофизики. Методы электроразведки базируются на измерении параметров искусственно созданных и естественных электромагнитных полей в горных породах. Электроразведка применяется при поисках и разведке месторождений металлических руд, подземных вод, в инженерной геологии, экологии и археологии.
Электрическая разведка         
  • Геоэлектрический разрез

электроразведка, группа методов разведочной геофизики, основана на изучении естественных или искусственно возбуждаемых электрических и электромагнитных полей в земной коре. Физическая основа Э. р. - различие горных пород и руд по их удельному электрическому сопротивлению, диэлектрической проницаемости, магнитной восприимчивости и другим свойствам.

Впервые Э. р. для поисков полезных ископаемых применили в конце 19 в. К. Барус (США) и Е. И. Рагозин (Россия). В 1912 К. Шлюмберже (Франция) разработал и практически использовал методы, основанный на исследовании постоянных электрических полей. В 1919-22 К. Лундберг и Х. Зундберг (Швеция) положили начало методам Э. р., изучающим переменные электромагнитные поля. Первые электроразведочные работы в СССР выполнил в 1924 А. А. Петровский. При этом изучались естественные электрические поля, возникающие в результате электрохимических процессов, происходящих на контакте руды с вмещающими породами.

По характеру исследуемых электромагнитных полей методы Э. р. делятся на несколько групп.

Методы кажущегося сопротивления. Основаны на изучении постоянных электрических полей, создаваемых в земной коре двумя заземлёнными проводниками (заземлениями), подключенными к полюсам источника постоянного тока. Электрическое поле исследуется при помощи измерительной цепи, состоящей из двух заземлений и прибора для измерения разности потенциалов между этими заземлениями. Результаты измерений выражаются в виде т. н. кажущегося сопротивления, изменение которого даёт представление о геологическом строении исследуемой площади.

Методы электрохимической поляризации. Этими методами изучают электрические поля, возникающие вокруг рудных залежей, минерализованных зон и других геологических объектов вследствие их электрической поляризации. Причиной поляризации могут быть естественные электрохимические процессы, в которых участвует рудное тело (окисление, восстановление и др.), либо электрохимические процессы, искусственно вызванные пропускаемым током. По распределению потенциалов этого поля определяют наличие поляризующихся объектов и их положение. Основная область применения - поиски рудных месторождений.

Методы магнитотеллурического поля. С помощью этих методов исследуется переменная составляющая естественного электромагнитного поля Земли. Глубина проникновения магнитотеллурического поля в землю благодаря Скин-эффекту зависит от его частоты, поэтому поведение низких частот поля (сотые и тысячные доли гц) отражает строение земной коры на глубинах в несколько км, а более высоких частот (десятки и сотни гц) - на глубинах в несколько десятков м. Исследование зависимости измеренных электрических и магнитных компонент поля от его частоты позволяет изучать геологическое строение исследуемой территории.

Методы электромагнитного зондирования позволяют изучать геологический разрез в вертикальном направлении. Измерения проводятся в одной и той же точке профиля при изменении расстояния между электродами (дистанционное зондирование) или изменении частот электромагнитного поля (частотное зондирование). Электромагнитные зондирования применяются главным образом для изучения полого залегающих геологических структур (в т. ч. благоприятных для скопления нефти и газа). Индуктивные (или электромагнитные) методы. При работе этими методами поле возбуждается индуктивным способом (незаземлёнными контурами с переменным током). См. Электромагнитная разведка. Радиоволновые методы основаны на изучении поглощения радиоволн при их распространении в горных породах. Основной радиоволновой метод - радиоволновое просвечивание, при котором в одной из скважин или горных выработок помещается радиопередатчик, а в соседних измеряется напряжённость электромагнитного поля. Хорошо проводящие рудные залежи, находящиеся в пространстве между скважинами или выработками, поглощают большей частью электромагнитного поля и создают в области измерений радиотень. По её положению и размерам устанавливают наличие рудных тел и их контуров. Изучение геологического строения приповерхностных частей геологического разреза (до глубин 20-30 м) основано на использовании полей радиовещательной станций, распространяющихся вдоль поверхности земли и индуцирующих в проводящих объектах вторичные токи.

По характеру решаемых геологических задач выделяют рудную, структурную и инженерно-геологическую Э. р. Специфическая область применения - археология, гляциология и др. Существуют наземные, воздушные, скважинно-рудничные и морские модификации Э. р.

Электроразведочная аппаратура состоит из источников тока, источников электромагнитного поля и измерительных устройств. Источники тока - батареи сухих элементов, генераторы и аккумуляторы; источники поля - заземлённые на концах линии или незаземлённые контуры, питаемые постоянным или переменным током. Измерительные устройства состоят из входного преобразователя (датчика поля), системы промежуточных преобразователей сигнала, преобразовывающей сигнал для его регистрации и фильтрующей помехи, и выходного устройства, обеспечивающего измерение сигнала. Электроразведочная аппаратура, предназначенная для изучения геологического разреза на глубине, не превышающей 1-2 км, изготавливается в виде лёгких переносимых комплектов. Для изучения больших глубин применяются электроразведочные станции (См. Электроразведочная станция).

При первичной обработке результатов полевых наблюдений вычисляют кажущиеся сопротивления, потенциалы постоянных полей и др.; представляют их в виде графиков, карт, таблиц. В процессе дальнейшей геологической интерпретации проводится сравнение наблюдаемого поля с результатами теоретически рассчитанных моделей геологического разреза, используются сведения об электромагнитных свойствах пород, результаты работ другими методами.

Применение Э. р. позволяет удешевить и ускорить геологические исследования за счёт сокращения объёма дорогостоящих горно-проходческих и буровых работ. Развитие Э. р. связано с разработкой новых методов, увеличением исследуемой глубины земной коры и повышением степени надёжности получаемых результатов.

Лит: Заборовский А. И., Электроразведка, М., 1963; Якубовский Ю. В., Электроразведка, М., 1973; Якубовский Ю. В., Ляхов Л. Л., Электроразведка, 3 изд., М., 1974.

Ю. В. Якубовский.

Википедия

Сейсморазведка

Сейсморазвѐдка — раздел разведочной геофизики, основанный на регистрации искусственно возбуждаемых упругих волн и извлечении из них полезной геолого-геофизической информации. Зародилась в начале 1920-х годов. При помощи сейсморазведки изучается глубинное строение Земли, выделяются месторождения полезных ископаемых (в основном нефти и газа), решаются задачи гидрогеологии и инженерной геологии, проводится сейсмическое микрорайонирование. Сейсморазведка отличается высокой разрешающей способностью, технологичностью и большим объёмом получаемой информации.

Что такое СЕЙСМИЧЕСКАЯ РАЗВЕДКА - определение